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Abstract The rapid growth of wireless services and mobile users drives a great interest in cellular

networks with a hierarchical structure. Hierarchical cellular networks (HCNs) can provide high

system capacity, efficient channel utilization and inherent load-balancing capability. In this paper,

we develop an analytical model and a performance analysis method for a two-layer HCN with

bidirectional overflow and take-back strategies. Mobile users are divided into two classes. The

call requests (including new and handoff calls) of fast and slow users are preferably assigned to

the macrolayer and microlayer, respectively. A call from a fast user or slow user can overflow

to its non-preferable layer if there is no channel available. The successful overflow call can

be taken back to its preferable layer if a channel becomes available. Since the commonly used

exponentially distributed assumption for cell residence time and then the channel occupancy time

does not hold for emerging mobile networks, we model various cell residence times by general

distributions to adapt to more flexible mobility environments. The channel occupancy times are

derived in terms of the Laplace transforms of various cell residence times. The handoff rates,

overflow rates and take-back rates of each layer are also derived in terms of the new call arrival

rates and related probabilities. The stationary probabilities (and then the performance measures)

are determined on the basis of the theory of multi-dimensional loss systems.

Keywords Hierarchical cellular networks . Handoff . Overflow . Take-back . Cell residence

time . Channel occupancy time

1. Introduction

The demand of wireless services and mobile users is growing rapidly while the existing bandwidth

reserved for wireless communications is limited. Methods to improve radio spectrum efficiency

S. Tang (�) . W. Li
Department of Electrical Engineering and Computer Science,
University of Toledo, Toledo, OH 43606, USA
e-mail: stang@eng.utoledo.edu

W. Li
e-mail: wli@eecs.utoledo.edu



72 S. Tang, W. Li

are urgently needed so that higher network capacity can be achieved. Cell splitting can improve

the system capacity because of higher frequency reuse efficiency (or shorter frequency reuse

distance). This, however, potentially results in more frequent handoff operations and thus causes

a heavy signaling burden to the system, since the mobile user needs to cross more cells during

its lifetime, especially for a high-speed user. To avoid the overhead of smaller sized cells, a

hierarchical cellular architecture is proposed.

The hierarchical cellular network (HCN) consists of different layers. Different layers have

different sizes of cells, and large cells are overlaid on small cells. Low-speed users are normally

assigned to smaller cells, while high-speed users are assigned to larger cells. As a result, system

capacity increases while handoff load is limited. In a typical two-layer HCN, all the macrocells

form the upper layer, called the macrolayer; all the microcells form the lower layer, called the

microlayer. In general, the macrolayer and microlayer are the referable layers for fast and slow

user requests, respectively, but many further mechanisms like handoff priority access, overflow

limitation and reversible capability are used [1]. In [2], all new and handoff calls of fast and slow

users are first directed on the microcells; the macrocells are used for overflow calls. In contrast

to the speed-insensitive selection mechanism, the pure-speed-sensitive strategy allocates slow

and fast calls to microcells and macrocells, respectively, but there is no overflow call between

layers [3]. Most strategies in the literature are a mixture of the two simple ones. In [4,5,26], the

calls with different classes are served at different layers; the new calls and handoff calls from the

lower layer can overflow to the higher layer when there is no available channel on the lower layer.

In [6] only the handoff calls from the lower layer can overflow to its higher layer. A common

feature of these strategies is the unidirectional overflow without reversible capability, i.e., a call

can only overflow from microlayer to macrolayer; once a call overflow to the macrolayer, it

cannot be taken back again, even when a channel is available in the microlayer. It is obviously

unsuitable that the overflow call from a slow user occupies the precious macrolayer resource

(from the viewpoint of frequency reuse efficiency) while the call from a fast users is blocked due

to lack of available channel, especially at the time when there is an idle channel available in the

microlayer.

To improve the above strategies, some researchers model the HCN by allowing the overflow

calls to return to the microlayer. An analytical model of HCN with both overflow and underflow

schemes is proposed in [7], where the overflow calls of slow users in the macrocell can be

directed to the next microcell (take-back) at the boundary when the system finds idle channels

in the next microcell. Performance analysis shows that this strategy reduces the blocking and

dropping probabilities of fast users; it also reduces the dropping probability of slow users. The

disadvantage is that the system control load and the blocking probability of slow users are slightly

increased. Similar analytic models are developed in [8–12]. The introduction of the take-back

strategy produces an increase in traffic capacity. The price of this performance improvement is

greater system complexity, as the system has to monitor the eventual availability of resources

in the microlayer. However, these improved strategies are also unidirectional, i.e., the overflow

of fast users from macrolayer to microlayer is not allowed. It is obviously unfair to the calls of

fast users. Since fast users and slow users are not treated equally, a call from a slow user can

use more channel resource than that from a fast user. To make matters worse, in the unbalanced

traffic environment, the call from a fast user has to be blocked even though there are many free

channels in the microlayer.

In [13], a bidirectional call-overflow scheme based on mobile velocity is proposed and an-

alyzed by using two one-dimensional Markov processes; the results show that it has a better

characteristic in balancing the telecommunications traffic load between macrocells and micro-

cells. All the slow and fast calls can naturally share the common channel resources provided by

the two layers, and thus give the best performance compared with unidirectional call-overflow
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schemes. Although call overflow can produce higher overhead and more handoffs, by simulation

there is little difference among three schemes (i.e., bidirectional, unidirectional and no overflow

schemes) from the aspect of the number of successful handoffs per call when the traffic is not

very high. A drawback of [13] is that it does not consider the successive operations of overflow

calls after they have overflowed. Obviously, the successful overflow calls should either work on

the non-referable layer until completion, or return to their referable layer if possible. As men-

tioned, the later case is obviously better since it can enable better resource configuration between

different layers, higher system capacity and better quality of service (QoS). This is also shown

in [14] by numerical examples through a comparative study among the bidirectional overflow

and take-back scheme, no overflow scheme, unidirectional overflow scheme, unidirectional over-

flow and take-back scheme, and bidirectional overflow without take-back scheme. However, the

handoff calls of fast users and slow users in [14] are treated the same as the corresponding new

calls (i.e., no prioritization of handoff calls is considered), so no service differentiation can be

achieved. Moreover, a common drawback of [13] and [14] is that the channel occupancy times

of slow and fast users are assumed to be exponentially distributed, as discussed in many other

publications related to the performance evaluation of HCNs.

It is convenient and tractable to assume the exponential distribution of channel occupancy

time [1–8,10,12–14]. However, recent studies show that channel occupancy times and interarrival

times of cell traffic are no longer exponentially distributed [27–29]. The authors in [27] conclude

that channel occupancy times and related time variables are not exponentially distributed from

a series of tests for mobile cellular systems, and a lognormal distribution or a mixture of Erlang

distributions gives a better statistical fitting to the field data. In [28], the cell residence time, which

may have various probabilistic characteristics depending upon different mobility environments,

is modeled as the sum of hyper exponential (SOHYP) random variables. In [29], a mobility

model where the cell residence time is characterized by a hyper-Erlang distribution is analyzed

for PCS networks.

In this paper, a two-layer hierarchical cellular network with bidirectional overflow and

take-back strategies under generally distributed cell residence times is considered. The macro-

layer and microlayer are respectively the referable layers for fast and slow user requests (in-

cluding new and handoff calls). A call from a fast user will overflow to the microlayer if there

is no channel available. The successful overflow call can be taken back to its macrolayer if a

channel becomes available. A similar procedure is applied to a call from a slow user. The cell

residence times (and thus channel occupancy times) of fast and slow users in different layers are

modeled as general distribution to adapt various mobility environments. The Laplace transform

approach is employed to determine the channel occupancy times for different types of calls (i.e.,

new call, handoff call, overflow call and take-back call of fast and slow users). This approach

would also be useful in some other queuing models, for instance, with a buffer to queue the new

or handoff requests due to lack of available channels. An analytical model is developed, and

some important performance measures such as the new call blocking probability and handoff

dropping probability of fast and slow users for each layer and for the network, the carried traffic

of each type of user in different layers, and the forced-termination probability in the HCN are

evaluated.

The remainder of the paper is organized as follows: Section 2 proposes the system model

and related assumptions; Section 3 derives the various arrival rates; Section 4 derives the var-

ious channel occupancy times; Section 5 determines the stationary probability in each layer

by using the results of Sections 3 and 4; Section 6 derives some interesting performance mea-

sures; Section 7 presents the numerical results and discussions; and Section 8 concludes the

paper.
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2. Model description and assumptions

Consider a two-layer hierarchical cellular network consisting of a set of macrocells and micro-

cells, where each macrocell overlays N microcells. Assume that there are two classes of user

mobility: the slow user (e.g., pedestrian) and the fast user (e.g., vehicle). A call from a slow user

is first directed to a microcell. If it is blocked, it will overflow to the macrocell overlaying the

microcell. A call from a fast user is first directed to a macrocell. If it is blocked, it will overflow

to one of the underlying microcells. There are many methods in the literature to handle the layer

selection, such as layer selection by user speed [11,15–17], layer selection by residence time

[6,18,19], and fuzzy layer selection [20,21]. In this analysis, we assume that the problem of the

optimum classification of mobile users has been solved. The successful overflow calls can be

taken back to their preferable layers if traffic channels become available. The take-back process

can be executed immediately when one of the channels in the preferable layer becomes available,

or executed when the overflow call crosses the boundary of a microcell. Here we choose the later

case for simply modeling the channel occupancy times of overflow and take-back calls (see

details in the next section). We further assume that the user speed does not change greatly during

a call session (so that the speed of each type of call is not out of its threshold) and a macrocell

exactly covers its underlying N microcells.

Due to the limited resource (channels) in wireless communications, calls with different pri-

orities should be treated differently in resource allocation. A handoff call is usually given higher

priority over a new call to maintain lower handoff dropping probability, because dropping an on-

going call is less desirable than blocking a new call from the perception of mobile users. Various

handoff priority-based channel allocation schemes have been proposed in the literature, such as

cutoff priority scheme [22], queuing priority scheme [23], and new call bounding scheme [24],

etc. We choose the new call bounding scheme for each layer of the HCN due to its simplicity: if

the number of new calls in a cell (microcell or macrocell) exceeds a threshold when a new call

arrives, the new call will be blocked; otherwise it will be admitted. The handoff call is blocked

in a current cell only when all channels in the cell are used up. Unlike the case of single-layer

cellular networks in [24], the call admission and resource allocation strategy has some successive

processes in HCNs, i.e., the blocked call in a layer does not necessarily have to be dropped from

the network and overflow to another layer. Furthermore, the successful overflow call can return

to its preferable layer when a channel becomes available in that layer.

Each macrocell is allocated CM channels, of which CA and CB channels are the maximum

value allowed for new calls and overflow calls, respectively. Each microcell is allocated Cm

channels, of which Ca and Cb channels are the maximum value allowed for new calls and

overflow calls, respectively. Here the term of “channel” refers to a generic logical channel

(e.g., a logical channel could be a double physical channel or several time slots for commu-

nication in the up- and down-link directions with a generic multiple access method). Then,

the call admission and resource allocation strategies in each macrocell and microcell are as

follows.

Macrocell:� A new call from a fast user is rejected and attempts to overflow to a microcell when there are

CA ongoing new calls of fast users or CM channels are busy in the macrocell.� A handoff call from a fast user is rejected and attempts to overflow to a microcell when CM

channels are busy.� A take-back call from a fast user is rejected (and attempts a handoff to an adjacent microcell)

when CM channels are busy (a take-back call is considered to have the same priority as a

handoff call).
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Fig. 1 The two-layer hierarchical
cellular network model

� An overflow call from a slow user is rejected when there are CB ongoing overflow calls or CM

channels are busy in the macrocell.

Microcell:� A new call from a slow user is rejected and attempts to overflow to a macrocell when there are

Ca ongoing new calls of slow users or Cm channels are busy in the microcell.� A handoff call from a slow user is rejected and attempts overflow to a macrocell when Cm

channels are busy.� A take-back call from a slow user is rejected (and continues to exploit the macrocell resource)

when Cm channels are busy.� An overflow call from a fast user is rejected when there are Cb ongoing overflow calls or Cm

channels are busy in the microcell.

A simple block diagram of the two-layer HCN model is shown in Fig. 1.

In the development of the model we introduce the following assumptions:� The arrival process is a Poisson distribution for new calls and handoff calls. The mean new

call arrival rates of fast and slow users to the corresponding cells are λ f n and λsn , respectively.

The mean handoff call arrival rates of fast and slow users to the corresponding cells are λ f h

and λsh , respectively. (The mean handoff call arrival rates will be derived by balancing the

incoming and outgoing handoff rates, as explained later).� The arrival process is a Poisson distribution for overflow and take-back traffic. The mean arrival

rates of overflow and take-back calls to a macrocell (or microcell) are λso and λ f t (or λ f o and

λst ), respectively. (The mean arrival rates of overflow and take-back calls will be derived later).� The cell residence times of each type of user in different layers are of general distributions.

Let random variables Rsm and R f M denote the cell residence times of slow and fast users

in a microcell and macrocell with mean 1/rsm and 1/r f M , and Rr
sm and Rr

f M denote the

corresponding residual cell residence times, respectively. Let random variables R f m and Rs M

denote the cell residence times of fast and slow users in a microcell and macrocell with mean

1/r f m and 1/rs M , and Rr
f m and Rr

s M denote the corresponding residual cell residence times,

respectively.� The unencumbered call holding times of fast and slow users are of negative exponential distri-

butions. Let random variables HM and Hm denote the call holding times of fast and slow users

with mean 1/hM and 1/hm , and Hr
M and Hr

m denote the corresponding residual call holding

times, respectively.� All macrocells and microcells are stochastically identical in each layer.
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Strictly speaking, the handoff and overflow arrival processes may not be exactly Poisson

processes because some correlations exist among the call types and the nature of overflow

processes. Particularly, overflow traffic is typically rather bursty and usually modeled as an

interrupted Poisson process (IPP) [5], a Markov modulated Poisson process (MMPP) [25], or

a renewal process [9]. However, for convenience and tractability, the overflow process is also

simply approximated as a Poisson process in some literatures, such as [13,14, 26]. The Poisson

assumption is often adopted in the analysis of queuing networks, and it is reported that the

performance is little degraded under this assumption [9].

3. The various arrival rates

In this section, we derive the arrival rates of handoff calls, overflow calls and take-back calls in

each layer. The notations of different arrival rates and time variables are listed in nomenclature.

Consider the macrocell:

The total arrival rate to the macrocell is the sum of the arrival rates of new calls λ f n , handoff calls

λ f h and take-back calls λ f t of fast users, as well as the overflow calls of slow users λso. Note

that handoff requests of fast users out of a macrocell may include the following three cases: (a)

new calls not blocked attempt to handoff; (b) handoff calls not dropped attempt to handoff; (c)

the successful take-back calls of fast users attempt to handoff. By balancing the incoming and

outgoing handoff rates in steady state, we have

λ f h = λ f n
(
1 − Pn

f M

)
p f 1 + λ f h

(
1 − Ph

f M

)
p f 2 + λ f t (1 − Pf t ) p f 3, (1)

where p f 1 = P(Rr
f M < HM ) denotes the probability that a new call from a fast user initiated from

a macrocell will continue its session to a neighboring macrocell, p f 2 = P(R f M < Hr
M ) denotes

the probability that a handoff call from a fast user will continue its session to a neighboring

macrocell, p f 3 = P(Rr
f M < Hr

M ) denotes the probability that a take-back call from a fast user

will continue its session to a neighboring macrocell. Note that a take-back call has already

dwelled some period time in the macrocell through the underlying microcell before it goes back

to macrolayer. p f 1 can be calculated by the Laplace transform approach:

p f 1 =
∫ ∞

0

∫ ∞

t
fHM (τ ) fRr

f M
(t)dτdt =

r f M [1 − f ∗
R f M

(hM )]

hM
.

The last equation was obtained by the fact that fRr
f M

(t) = r f M (1 − FR f M (t)), where fRr
f M

(t)
is the probability density function (pdf) of Rr

f M , FR f M (t) is the cumulative distribution function

(cdf) of R f M . Similarly, p f 2 and p f 3 can be determined as

p f 2 =
∫ ∞

0

∫ ∞

t
fHr

M
(τ ) fR f M (t) dτdt = f ∗

R f M
(hM ), p f 3 = p f 1 =

r f M
[
1 − f ∗

R f M

(
hM

)]
hM

,

where fHr
M

(t) = fHM (t) is used in above equations due to the memoryless property of the expo-

nential distribution.

The take-back requests of fast users may be from the following three cases: (a) overflowed new

calls; (b) overflowed handoff calls; (c) the take-back calls of fast users not succeeded at previous
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attempts (since the take-back operations can be executed at the boundary of every microcell).

Thus, the following equation should hold in steady state:

λ f t = λ f n Pn
f M (1 − Pf o)p f 4 + λ f h Ph

f M (1 − Pf o)p f 5 + λ f t Pf t p f 6, (2)

where p f 4 = P(Rr
f m < HM ) denotes the probability that an overflowed new call from a fast user

in a microcell attempts a take-back operation at the boundary of the microcell, p f 5 = P(R f m <

Hr
M ) denotes the probability that an overflowed handoff call from a fast user attempts a take-back

operation at the boundary of the microcell, p f 6 = P(R f m < Hr
M ) denotes the probability that

a take-back call from a fast user (not succeeded at previous attempts) continues a take-back

operation at the boundary of the microcell. Using the Laplace transform approach, p f 4, p f 5 and

p f 6 can be easily determined by

p f 4 =
∫ ∞

0

∫ ∞

t
fHM (τ ) fRr

f m
(t)dτdt =

r f m
[
1 − f ∗

R f m
(hM )

]
hM

,

p f 5 = p f 6 =
∫ ∞

0

∫ ∞

t
fHr

M
(τ ) fR f m (t)dτdt = f ∗

R f m
(hM ).

From Eqs. (1) and (2), we can solve

λ f h = λ f n

Z f

{
(1 − Pn

f M )(1 − Pf t p f 6)p f 1 + Pn
f M (1 − Pf o)(1 − Pf t )p f 3 p f 4

}
, (3)

λ f t = λ f n

Z f

{
Pn

f M [1 − (1 − Ph
f M )p f 2](1 − Pf o)p f 4 + Ph

f M (1 − Pn
f M )(1 − Pf o)p f 1 p f 5

}
,

(4)

where Z f = [1 − (1 − Ph
f M )p f 2](1 − Pf t p f 6) − Ph

f M (1 − Pf o)(1 − Pf t )p f 3 p f 5.

The arrival rate of the overflow calls of slow users into the macrocell is easily determined by

λso = N
(
λsn Pn

sm + λsh Ph
sm

)
. (5)

Consider the microcell:

The total arrival rate to a microcell is the sum of the arrival rates of new calls λsn , handoff calls

λsh and take-back calls λst of slow users, as well as the overflow calls of fast users λ f o. By using

similar analysis to the macrocell, we have

λsh = λsn
(
1 − Pn

sm

)
ps1 + λsh

(
1 − Ph

sm

)
ps2 + λst (1 − Pst )ps3, (6)

where ps1 = P(Rr
sm < Hm) denotes the probability that a new call from a slow user initiated from

a microcell will continue its session to a neighboring microcell, ps2 = P(Rsm < Hr
m) denotes

the probability that a handoff call from a slow user will continue its session to a neighboring

microcell, ps3 = P(Rsm < Hr
m) denotes the probability that a take-back call from a slow user will

continue its session to a neighboring microcell (note the difference between the microcell and

macrocell case). These probabilities can be easily calculated by the Laplace transform approach
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as:

ps1 =
∫ ∞

0

∫ ∞

t
fHm (τ ) fRr

sm
(t)dτdt = rsm

[
1 − f ∗

Rsm
(hm)

]
hm

,

ps2 = ps3 =
∫ ∞

0

∫ ∞

t
fHr

m
(τ ) fRsm (t)dτdt = f ∗

Rsm
(hm).

The take-back requests of slow users may be from the overflowed new calls, the overflowed

handoff calls and the take-back calls of slow users not succeeded at previous attempts. Thus, the

following equation should hold in steady state:

λst = λsn Pn
sm(1 − Pso)ps1 + λsh Ph

sm(1 − Pso)ps2 + λst Pst ps3. (7)

From Eqs. (6) and (7), we can solve

λsh = λsn

Zs

{(
1 − Pn

sm

)
(1 − Pst ps3)ps1 + Pn

sm(1 − Pso)(1 − Pst )ps1 ps3

}
, (8)

λst = λsn

Zs

{
Pn

sm

[
1 − (

1 − Ph
sm

)
ps2

]
(1 − Pso)ps1 + Ph

sm

(
1 − Pn

sm

)
(1 − Pso)ps1 ps2

}
, (9)

where Zs = [1 − (1 − Ph
sm)ps2](1 − Pst ps3) − Ph

sm(1 − Pso)(1 − Pst )p2
s3.

The arrival rate of the overflow calls of fast users into a microcell (assume the overflow calls

from one macrocell are distributed into the N microcells on average) is easily determined by

λ f o = 1

N

(
λ f n Pn

f M + λ f h Ph
f M

)
. (10)

The various arrival rates obtained above will be used for solving the stationary probabilities in

Section 5.

4. The various channel occupancy times

In this section, we use the Laplace transform approach to analyze the various channel occupancy

times. This analytical approach is very popular in wireless mobile networks [9,29,30] where

[29,30] use it in PCS networks, and [9] uses it in hierarchical cellular networks.

Consider the microcell:

Let T n
sm , T h

sm and T t
sm be the channel occupancy times for new calls, handoff calls and take-back

calls of slow users in a microcell, respectively. Then we have

T n
sm = min{Hm, Rr

sm}, T h
sm = min{Hr

m, Rsm} and T t
sm = min{Hr

m, Rsm}.

From the Theorem 2 of [30], we obtain respectively their Laplace transforms

f ∗
T n

sm
(s) = hm

s + hm
+ srsm

(s + hm)2

[
1 − f ∗

Rsm
(s + hm)

]
,
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f ∗
T h

sm
(s) = f ∗

T t
sm

(s) = hm

s + hm
+ s

s + hm
f ∗

Rsm
(s + hm),

and their means

E
[
T n

sm

] = 1

hm
− rsm

h2
m

[
1 − f ∗

Rsm
(hm)

]
, (11)

E
[
T h

sm

] = E
[
T t

sm

] = 1

hm

[
1 − f ∗

Rsm
(hm)

]
. (12)

Let T o
f m be the channel occupancy time for the overflow calls of fast users in a microcell.

It consists of the channel occupancy times of the overflow new calls, T n
f m , and the overflow

handoff calls, T h
f m , of fast users in a microcell. Using the similar analysis to Section A, we have

T n
f m = min{HM , Rr

f m}and T h
f m = min{Hr

M , R f m}.
Then we obtain the Laplace transforms of the probability density functions (pdfs) of the

random variables

f ∗
T n

f m
(s) = hM

s + hM
+ sr f m

(s + hM )2

[
1 − f ∗

R f m
(s + hM )

]
,

f ∗
T h

f m
(s) = hM

s + hM
+ s

s + hM
f ∗

R f m
(s + hM ),

and their means

E
[
T n

f m

] = 1

hM
− r f m

h2
M

[
1 − f ∗

R f m
(hM )

]
, E

[
T h

f m

] = 1

hM

[
1 − f ∗

R f m
(hM )

]
.

Hence, we obtain the Laplace transform of the pdf of T o
f m

f ∗
T o

f m
(s) = q f ∗

T n
f m

(s) + (1 − q) f ∗
T h

f m
(s),

where q represents the fraction of the overflow new calls to all the overflow requests of fast users

and is given by q = λ f n Pn
f M

λ f n Pn
f M +λ f h Ph

f M
. Then we obtain the mean of T o

f m

E
[
T o

f m

] = 1

hM
− λ f n Pn

f M

λ f n Pn
f M + λ f h Ph

f M

r f m

h2
M

[
1 −

(
1 − hMλ f h Ph

f M

r f mλ f n Pn
f M

)
f ∗

R f m
(hM )

]
. (13)

Consider the macrocell:

Let T n
f M , T h

f M and T t
f M be the channel occupancy times for new calls, handoff calls and take-

back calls of fast users in a macrocell, respectively. Then we have T n
f M = min{HM , Rr

f M }, T h
f M =

min{Hr
M , R f M } and T t

f M = min{Hr
M , Rr

f M }.
Similar to the microcell, we obtain the means of T n

f M , T h
f M and T t

f M , respectively.

E
[
T n

f M

] = E
[
T t

f M

] = 1

hM
− r f M

h2
M

[
1 − f ∗

R f M
(hM )

]
, (14)
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E
[
T h

f M

] = 1

hM

[
1 − f ∗

R f M
(hM )

]
. (15)

Let T o
s M be the channel occupancy time for the overflow calls of slow users in a macrocell. It

consists of the channel occupancy times of the overflow new calls, T n
s M , and the overflow handoff

calls, T h
s M , of slow users in a macrocell. Then we have

T n
s M = min

{
Hm, Rr

s M

}
and T h

s M = min
{

Hr
m, Rr

s M

}
.

Then we obtain the Laplace transforms of the pdfs of the random variables and their means

f ∗
T n

s M
(s) = f ∗

T h
s M

(s) = hm

s + hm
+ srs M

(s + hm)2

[
1 − f ∗

Rs M
(s + hm)

]
,

E
[
T n

s M

] = E
[
T h

s M

] = 1

hm
− rs M

h2
m

[
1 − f ∗

Rs M
(hm)

]
.

Hence, we obtain the Laplace transform of the pdf of T o
s M and its mean

f ∗
T o

s M
(s) = f ∗

T n
s M

(s) = f ∗
T h

s M
(s), E[T o

s M ] = 1

hm
− rs M

h2
m

[
1 − f ∗

Rs M
(hm)

]
. (16)

The means of various channel occupancy times obtained above will be used for solving the

stationary probabilities in Section 5.

5. The stationary probabilities

From the model description, we know that the total arrival process to each layer is a Poisson

process and the channel occupancy time is a random variable whose distribution may depend on

the type of the call (or customer termed in queueing networks), so we can model the microcell and

macrocell as stationary symmetric queues, and describe them as loss systems with multi-servers

(channels). This kind of system is known to have an insensitivity property, i.e., the stationary

probability depends on the service (channel occupancy time) distribution only through its mean

[31]. For a macrocell, let πM (i, j, k, l) denote the joint stationary probability that i is the number

of new calls of fast users, j is the number of handoff calls of fast users, k is the number of

take-back calls of fast users and l is the number of overflow calls of slow users, respectively.

From the theory of loss system [9,31,32], we have

πM (i, j, k, l) = G−1
M

(
λ f n E

[
T n

f M

])i(
λ f h E

[
T h

f M

]) j (
λ f t E

[
T t

f M

])k(
λso E

[
T o

s M

])l

i! j!k!l!
, (17)

(i, j, k, l) ∈ � ≡ { i ≤ CA, j ≤ CM , k ≤ CM , l ≤ CB, i + j + k + l ≤ CM }

where G M is the normalization constant and given by

G M =
∑

(i, j,k,l)∈�

(
λ f n E

[
T n

f M

])i(
λ f h E

[
T h

f M

]) j (
λ f t E

[
T t

f M

])k(
λso E

[
T o

s M

])l

i! j!k!l!
.
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Similarly, for a microcell, let πm(i, j, k, l) denote the joint stationary probability that i is the

number of new calls of slow users, j is the number of handoff calls of slow users, k is the number

of take-back calls of slow users and l is the number of overflow calls of fast users, respectively.

Then we have

πm(i, j, k, l) = G−1
m

(
λsn E

[
T n

sm

])i(
λsh E

[
T h

sm

]) j (
λst E

[
T t

sm

])k(
λ f o E

[
T o

f m

])l

i! j!k!l!
, (18)

(i, j, k, l) ∈ � ≡ {
i ≤ Ca, j ≤ Cm, k ≤ Cm, l ≤ Cb, i + j + k + l ≤ Cm

}
where Gm is the normalization constant and given by

Gm =
∑

(i, j,k,l)∈�

(
λsn E

[
T n

sm

])i(
λsh E

[
T h

sm

]) j (
λst E

[
T t

sm

])k(
λ f o E

[
T o

f m

])l

i! j!k!l!
.

6. The performance measures

6.1. The basic performance measures

For the macrocell

: the blocking of a new call from a fast user occurs when the number of channels occupied by new

calls is equal to CA, or there is no available channel in the macrocell (even though the number

of channels occupied by new calls is less than CA). Hence, the new call blocking probability of

fast users in a macrocell is

Pn
f M =

∑
i=CA or

i+ j+k+l=CM

πM (i, j, k, l). (19)

The handoff failure of a handoff call from a fast user occurs when all the CM channels in the

macrocell are occupied. Hence, the handoff failure probability of fast users in a macrocell is

Ph
f M =

∑
i+ j+k+l=CM

πM (i, j, k, l). (20)

Obviously, when CA = CM , we have Pn
f M = Ph

f M from the definitions, this becomes the

non-prioritized handoff scheme in the macrocell.

A take-back request from a fast user fails when all the channels assigned to them in the

macrocell are occupied. From Section 2, we know the take-back calls have the same priority as

the handoff calls. Hence, the take-back failure probability is Pf t = Ph
f M .

The overflow request from a slow user fails when the number of channels occupied by the

overflow calls is equal to CB , or there is no available channel in the macrocell. Hence, the

overflow failure probability of slow users in a macrocell is

Pso =
∑

l=CB or
i+ j+k+l=CM

πM (i, j, k, l). (21)
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For the microcell:

the blocking of a new call from a slow user occurs when the number of channels occupied by

new calls is equal to Ca , or there is no available channel in the microcell. Hence, the new call

blocking probability of slow users in a microcell is

Pn
sm =

∑
i=Ca or
i+ j+k+l=Cm

πm(i, j, k, l). (22)

Similarly, the handoff failure probability of slow users in a microcell is

Ph
sm =

∑
i+ j+k+l=Cm

πm(i, j, k, l). (23)

The take-back failure probability of slow users in a microcell is: Pst = Ph
sm . The overflow

request from a fast user fails when the number of channels occupied by the overflow calls is equal

to Cb, or there is no available channel in the microcell. Hence, the overflow failure probability

of fast users in a microcell is

Pf o =
∑

l=Cb or
i+ j+k+l=Cm

πm(i, j, k, l). (24)

For the network:

from previous analysis, we know that a new call will not necessarily be blocked from the HCN

when it is rejected in its preferable layer, nor will a handoff call. Now we are interested in the

final blocking (or dropping) probability of new calls (or handoff calls) of different types of users

in the HCN. By the PASTA (Poisson arrivals see time average) property, the final blocking and

dropping probabilities of new calls and handoff calls of fast users in the HCN are respectively

Pn
f = Pn

f M Pf o and Ph
f = Ph

f M Pf o. (25)

The final blocking and dropping probabilities of new calls and handoff calls of slow users in

the HCN are respectively

Pn
s = Pn

sm Pso and Ph
s = Ph

sm Pso. (26)

6.2. Carried traffic distribution

After obtaining the stationary probabilities of each layer, we can easily determine the carried

traffic distributions of different types of calls in each layer. Let CT f
M and CTs

M denote the carried

traffic of fast and slow users in the macrocell, and CT f
m and CTs

m denote the carried traffic of fast

and slow users in the microcell, respectively. Then, we have

CTf
M =

∑
(i, j,k,l)∈�

(i + j + k) · πM (i, j, k, l). (27)
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Fig. 2 The timing diagram for a forced-termination call

CTs
M =

∑
(i, j,k,l)∈�

l · πM (i, j, k, l).. (28)

CTf
m =

∑
(i, j,k,l)∈�

l · πm(i, j, k, l). (29)

CTs
m =

∑
(i, j,k,l)∈�

(i + j + k) · πm(i, j, k, l). (30)

The total carried traffic in each macrocell and microcell, CT M and CTm , are thus respectively

CT M = CT f
M + CTs

M ,

and

CTm = CT f
m + CTs

m .

6.3. The forced-termination probabilities

We have already got the following probabilities: Pn
f M , Ph

f M , Pn
sm , Ph

sm , Pf o, Pf t , Pso and Pst . Now

we are interested in the probability of a forced-termination call. We separate the problem into

several parts: (a) the forced-termination probability of a call from a slow user in the microlayer,

P f t
sm ; (b) the forced-termination probability of a call from a fast user in the macrolayer, P f t

f M ;

(c) the forced-termination probability of a call from a slow user in the macrolayer, P f t
s M ; (d) the

forced-termination probability of a call from a fast user in the microlayer, P f t
f m ; and the total

forced-termination probability in the HCN, P f t
total . (a) Find P f t

sm , i.e., the probability that a call

from a slow user is forced to terminate from the system at the k-th handoff (note that the call is

connected with probability 1 − Pn
sm , and then makes k − 1 successful handoffs with probability

(1 − Ph
sm)k−1, and is forced to terminate at the k-th handoff with probability Ph

sm Pso). Let’s

consider the timing diagram of a forced-termination call in Fig. 2. T1 and t1 are the cell residence

time and residual cell residence time of a call from a slow user in microcell 1, respectively; ti is

the cell residence time of a call from a slow user in microcell i (i ≥ 2).

According to previous assumptions, T1, t2, . . . , tk , . . . are independent and identically dis-

tributed random variables, which have the same pdf fRsm (·) and cdf FRsm (·) with mean 1/rsm .

Let f ∗
t1 (s) and f ∗

ti (s) be the Laplace transforms of the pdfs of the random variables t1 and

ti (i ≥ 2), respectively. The effective call holding time tsm is the summation of ti (i ≥ 1), i.e.,

tsm = t1 + t2 + · · · + tk . Let ftsm (·) and f ∗
tsm

(s) be the pdf and the corresponding Laplace transform
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of the random variable tsm . Then, from the theory of Laplace transform [33], we have

f ∗
t1 (s) =

∫ ∞

0

rsm[1 − FRsm (τ )e−sτ dτ = rsm

s

[
1 − f ∗

Rsm
(s)

]
,

f ∗
t2 (s) = f ∗

t3 (s) = · · · = f ∗
tk (s) = f ∗

Rsm
(s),

and

f ∗
tsm

(s) =
k∏

i=1

f ∗
ti (s) = rsm

s

[
1 − f ∗

Rsm
(s)

][
f ∗

Rsm
(s)

]k−1
. (31)

By summing all the probabilities for 1 ≤ k < ∞, the probability P f t
sm is determined as

P f t
sm =

∞∑
k=1

(
1 − Pn

sm

)(
1−Ph

sm

)k−1
Ph

sm Pso · Pr(t1 + t2 + · · · + tk ≤ Hm)

=
∞∑

k=1

(
1 − Pn

sm

)(
1−Ph

sm

)k−1
Ph

sm Pso ·
∫ ∞

0

ftsm (t) Pr (Hm ≥ t |t1 + t2 + · · · + tk ≤ t)dt

=
∞∑

k=1

(
1 − Pn

sm

)(
1−Ph

sm

)k−1
Ph

sm Pso ·
∫ ∞

0

∫ ∞

t
ftsm (t) fHm (τ ) dτdt

=
∞∑

k=1

(
1 − Pn

sm

)(
1−Ph

sm

)k−1
Ph

sm Pso · f ∗
tsm

(hm).

Substituting Eq. (33) into the above expression, we have

P f t
sm =

∞∑
k=1

(
1 − Pn

sm

)(
1−Ph

sm

)k−1
Ph

sm Pso · rsm

hm

[
1 − f ∗

Rsm
(hm)

][
f ∗

Rsm
(hm)

]k−1

= rsm
(
1 − Pn

sm

)
Ph

sm Pso
[
1 − f ∗

Rsm
(hm)

]
hm

[
1 − (

1 − Ph
sm

)
f ∗

Rsm
(hm)

] . (32)

(b) The probability P f t
f M can be determined by following the same method.

P f t
f M = rsm

(
1 − Pn

sm

)
Ph

sm Pso[1 − f ∗
Rsm

(hm)]

hm
[
1 − (

1 − Ph
sm

)
f ∗

Rsm
(hm)

] . (33)

(c) Find P f t
s M , i.e., the probability that an overflow call from a slow user in the macrolayer is

forced to terminate from the system at the k-th macrocell-level overflow. It is noteworthy that one

macrocell covers N microcells. For the first time a call from a slow user overflow to a macrocell

with probability 1 − Pso, then it attempts a take-back operation at each boundary of a microcell;

assume it has failed x0 take-back operations and reaches the boundary of the current macrocell; we

say the call finishes its 1st macrocell-level overflow with probability A1 = (1 − Pso)Px0
st . Then

it attempts a take-back operation with failure and an overflow operation to the target macrocell

with succession, and continues to attempt x−1 take-back operations with failure and reaches

the boundary of the macrocell; we say the call finishes its 2nd macrocell-level overflow with
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probability A2 = (1 − Pso)Px
st . When the call makes k − 1 successful macrocell-level overflows

with probability Ak−1
2 , it is forced to terminate from the system at the k-th macrocell-level overflow

with probability Pst Pso. By summing all the probabilities for 1 ≤ k < ∞ and following the same

method as (a), the probability P f t
s M is determined as

P f t
s M = rs M A1 Pst Pso

[
1 − f ∗

Rs M
(hm)

]
hm

[
1 − A2 f ∗

Rsm
(hm)

] . (34)

(d) The probability P f t
f m can be determined by using the same analysis as (c).

P f t
f m =

rs M B1 Pf t Pf o
[
1 − f ∗

R f m
(hM )

]
hM

[
1 − B2 f ∗

R f M
(hM )

] , (35)

where B1 = (1 − Pf o) is the probability of 1st microcell-level overflow, B2 = Pf t (1 − Pf o) is

the probability of i-th microcell-level overflow (i ≥ 2).

e) After obtaining the above four probabilities, the total forced-termination probability in the

HCN can be easily calculated by

P f t
total = N (λsn + λsh + λst )P f t

sm + Nλ f o P f t
f m + (λ f n + λ f h + λ f t )P f t

f M + λso P f t
s M

N (λsn + λsh + λst + λ f o) + (λ f n + λ f h + λ f t + λsoλ f o)
. (36)

Note that the performance measures (or the joint stationary probabilities) are related to the

various arrival rates and channel occupancy times, which also have functional relationships with

the performance measures (as shown in Section 6.1 and 6.2). Hence, we need a recursive method

to compute those fixed-point equations. Basically, the simple and widely-used iterative technique

in the literature, for example [32,34], is enough to compute the performance measures. If the size

of Cm or CM increases, the state space of the system will increase drastically and the computation

may be difficult. In this case, the methods proposed in [35,36] may be used. All the numerical

results in the next section have convergent values of the performance measures.

7. Numerical results and discussions

In this section, we present numerical examples to study the performance of the two-layer HCN in

terms of the effect of overflow calls, mobility ratio and carried traffic distributions. We choose the

hyper-Erlang distribution as the distributions of our cell residence times, since the hyper-Erlang

model is shown to provide a universal approximator to any general distribution of nonnegative

random variable [30]. The pdf of a hyper-Erlang random variable and its Laplace transform are

given as follows:

f (t) =
V∑

i=1

αi
(viθi )

vi tvi −1

(vi − 1)!
e−vi θi t , t ≥ 0 and f ∗(s) =

V∑
i=1

αi

(
viθi

s + viθi

)vi

,

where
∑V

i=1 αi = 1, αi ≥ 0, θi ≥ 0 , N > 0, vi ≥ 0 (i = 1, 2, . . . , V ). Specifically, the parame-

ters are chosen as V = 2, α1 = 1 − α2 = 0.2, v1 = 2, v2 = 2, θ1 = 0.25 and θ2 = 0.40 for slow

users in a microcell (mean = 2.8 min) , and α1 = 1 − α2 = 0.1, v1 = 1, v2 = 2, θ1 = 0.35
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and θ2 = 0.45 for fast users in a macrocell (mean = 2.286 min), and α1 = 1 − α2 = 0.3,

v1 = 3, v2 = 2, θ1 = 0.75 and θ2 = 0.95 for fast users in a microcell (mean = 1.137 min),

and α1 = 1 − α2 = 0.1, v1 = 4, v2 = 2, θ1 = 0.115 and θ2 = 0.105 for slow users in a macro-

cell (mean = 9.441 min). The call holding time is exponentially distributed with mean 2.857 min

for fast users and 2.857 min for slow users. The other system parameters are chosen as follows:

CM = 30, CA = 20, CB = 10, Cm = 10, Ca = 8, Cb = 5. Let 	 denote the total arrival rate of

new calls and γ denote the mobility ratio, i.e., the fraction of new calls from slow users. Then

λsn = γ	/N , λ f n = (1 − γ )	, where N is the number of microcells covered by a macrocell

(N = 7), γ is basically set to be 0.5 except the case of presenting the effect of the mobility ratio.

The various handoff rates and take-back rates are recursively calculated from the new call arrival

rates and related probabilities.

Figure 3(a)–(f)shows the effect of Cb on different performance measures (note CB is fixed

at this case). As Cb increases, the final new call blocking and handoff dropping probability of

fast users, Pn
f and Ph

f , as well as the overflow failure probability of fast users Pf o will decrease;

while the corresponding measures of slow users, Pn
s , Ph

s and Pso, will increase. This is because

more calls of fast users can overflow to microcells, and the calls of slow users may thus confront

more intense competition from fast users. The effect of CB on performance measures can also

be obtained due to symmetry (not shown in figure). Hence, by adjusting the parameters Cb and

CB , we can effectively balance the traffic load with different QoS requirements.

Fig. 3 The effect of Cb on
performance measures. Square:
Cb = 3; Plus: Cb = 4; Triangle:
Cb = 5. Horizontal axis: total arrival
rate of new calls 	; Vertical axis:
performance measures, (a) Pn

f ; (b)

Pn
s ; (c) Ph

f ; (d) Ph
s ; (e) Pf o; (f) Pso.
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Fig. 4 The effect of mobility ratio
on performance measures. Square:
γ = 0.4; Plus: γ = 0.5; Triangle:
γ = 0.6. Horizontal axis: total
arrival rate of new calls 	; Vertical
axis: performance measures, (a) Pn

f ;

(b) Pn
s ; (c) Ph

f ; (d) Ph
s ; (e) Pf o; (f)

Pso

Figure 4(a)–(f)shows the effect of mobility ratio γ on different performance measures (note

Cb and CB are fixed at this case). As γ increases (equivalently, λsn increases and λ f n decreases),

from Fig. 4(a) and (c), it seems that the final new call blocking and handoff dropping probability

of fast users, Pn
f and Ph

f , will decrease. However, this may not always true. It is noteworthy that

the corresponding measures of slow users, Pn
s and Ph

s , as well as the overflow failure probabilities

Pf o and Pso, vary irregularly (from Fig. 4(b), (d)–(f)). The reason can be explained as follows.

When γ increases, two opposite results will be caused at each layer. On one hand, the calls of

slow users will increase and those of fast users will decrease, the performance of microcell will

be degraded and that of macrocell will be upgraded; On the other hand, the more overflow calls

of slow users will degrade the performance of macrocell, and the less overflow calls of fast users

will upgrade the performance of microcell. Hence, there are tradeoffs with respect to γ and Cb

in the microcell and with respect to γ and CB in the macrocell.

Figure 5(a)–(d)shows the carried traffic distribution of different user types at different layers.

We can observe that most of the traffic carried by the macrocell is of the fast user type and

most of the traffic carried by the microcell is of the slow user type. The capability of such an

autonomous mobility management maintains with respect to the change of mobility ratio or

number of channels assigned to overflow calls.

Figure 6(a)–(f)shows how the forced-termination probabilities depend on the change of mo-

bility ratio γ and total arrival rate of new calls 	 (note Cb and CB are fixed at this case). As 	

increases, all the forced-termination probabilities increase. This is intuitive, since the number
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Fig. 5 The carried traffic
distribution of different user types at
different layers. Square: fast users in
a macrocell; Plus: slow users in
a macrocell; Triangle: slow users in
a microcell; Asterisk: fast users in a
microcell. Horizontal axis: total
arrival rate of new calls 	; Vertical
axis: carried traffic distribution,
(a) γ = 0.4, Cb = 5; (b) γ = 0.5,
Cb = 5; (c) γ = 0.6, Cb = 5; (d)
γ = 0.5, Cb = 3.

Fig. 6 The forced-termination
probabilities. Square: γ =0.4; Plus:
γ =0.5; Triangle: γ =0.6. Horizontal
axis: total arrival rate of new calls
	; Vertical axis: different
forced-termination probabilities,

(a)P f t
f M ; (b)P f t

f m ; (c)P f t
sm ; (d)P f t

s M ;

(e) P f t
total

of channels is finite. As γ increases (equivalently, λsn increases and λ f n decreases), similar to

Fig. 4, the forced-termination probabilities vary irregularly; there are tradeoffs with respect to

γ and Cb in the microlayer and with respect to γ and CB in the macrolayer. We can explain

this by using Fig. 6 (a) as an example. When γ increases, on one hand, the calls of fast users

will decrease, leading to the decrease of P f t
f M ; on the other hand, the calls of slow users will
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increase and more overflow calls of slow users will enter the macrolayer to contend with fast

users, leading to the increase of P f t
f M . Hence, there is a tradeoff between γ and CB . It seems

that there are no obvious results in Fig. 6. However, if we compare Fig. 6(a) and (b), Fig. 6(c)

and (d), respectively, it is obvious that P f t
f m is far smaller than P f t

f M , and P f t
s M is even negligible

by comparing with P f t
sm . This validates that the bidirectional overflow and take-back strategy

proposed in this paper does not cause unacceptable forced-termination calls, which is consistent

with the simulation result in [13] (i.e., little difference among the bidirectional, unidirectional

and no overflow schemes from the aspect of the number of successful handoffs per call when

the traffic is not very high). Furthermore, the advantages of this strategy are quite obvious, such

as enabling better resource configuration between different layers, higher system capacity, and

better QoS.

8. Conclusions

We have developed an analytical model and a performance analysis method for a hierarchical

cellular network with bidirectional overflow and take-back strategies under generally distributed

cell residence times. Mobile users are divided into two classes. The call requests (including new

and handoff calls) of fast and slow users are preferably assigned to the macrolayer and microlayer,

respectively. A call from a quickly moving user (a fast user) will overflow to microlayer if there

is no macro-channel available. The successful overflow call can be taken back to macrolayer at

the boundary of a microcell if a channel becomes available. The similar procedure is applied to a

call from a slowly moving user. Since the commonly used exponentially distributed assumption

for cell residence time and then the channel occupancy time does not hold for emerging mobile

networks, we have modeled various cell residence times by general distributions, which have more

flexibility in modeling different mobility environments with various probability characteristics.

The channel occupancy times are derived in terms of the Laplace transforms of various cell

residence times. The various arrival rates such as handoff rates, overflow rates and take-back

rates of each layer, as well as the related performance measures are also derived by a number of

fixed-point equations. Finally, since the various arrival rates and the channel occupancy times,

as well as the stationary probabilities and the performance measures are analyzed separately

according to macrocell case and microcell case, the developed model and analysis method can

be easily extended to multi-layer HCNs without much computational effort.

Nomenclature

λsn(λsh) New (handoff) call arrival rate of slow users in a microcell.

λ f n(λ f h) New (handoff) call arrival rate of fast users in a macrocell.

λso(λ f o) Overflow rate of slow (fast) users to a macrocell (microcell) from the N
microcells (the macrocell).

λst (λ f t ) Take-back rate of slow (fast) users to a microcell (macrocell) from

the macrocell (the N microcells).

Hm(HM ) Requested call holding time of slow (fast) users.

Hr
m(Hr

M ) Residual call holding time of slow (fast) users from an arbitrary epoch.

Rsm(R f M ) Cell residence time of slow (fast) users in a microcell (macrocell).

Rr
sm(Rr

f M ) Residual cell residence time of slow (fast) users in a microcell (macrocell)

from an arbitrary epoch.

R f m(Rs M ) Cell residence time of fast (slow) users in a microcell (macrocell).
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Rr
f m(Rr

s M ) Residual cell residence time of fast (slow) users in a microcell (macrocell)

from an arbitrary epoch.

T n
sm(T h

sm) Channel occupancy time of new (handoff) calls of slow users in a microcell.

T n
f M (T h

f M ) Channel occupancy time of new (handoff) calls of fast users in a macrocell.

T o
s M (T o

f m) Channel occupancy time of overflow calls of slow (fast) users in a macrocell

(microcell).

T t
sm(T t

f M ) Channel occupancy time of take-back calls of slow (fast) users in a microcell

(macrocell).

Pn
sm(Pn

f M ) Blocking probability of new calls of slow (fast) users in a microcell

(macrocell).

Ph
sm(Ph

f M ) Handoff failure probability of handoff calls of slow (fast) users in a microcell

(macrocell).

Pso(Pf o) Overflow failure probability of slow (fast) users to a macrocell (microcell).

Pst (Pf t ) Take-back failure probability of slow (fast) users from macrocell to microcell

(microcell to macrocell).

Pn
s (Pn

f ) Blocking probability of new calls of slow (fast) users in the HCN.

Ph
s (Ph

f ) Dropping probability of handoff calls of slow (fast) users in the HCN.

CT f
M (CT s

M ) The carried traffic of fast (slow) users in the macrocell.

CT f
m (CT s

m) The carried traffic of fast (slow) users in the microcell.

P f t
sm (P f t

s M ) Forced-termination probability of a call from a slow user in the microlayer

(macrolayer).

P f t
f M (P f t

f m) Forced-termination probability of a call from a fast user in the macrolayer

(microlayer).

P f t
total The total forced-termination probability in the HCN.

X Arbitrary random variable X has mean E[X ], probability density

function fX (t), cumulative distribution function FX (t) and corresponding

Laplace transform f ∗
X (s).
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